Dysregulation of Renal Cyclooxygenase-2 in Rats with Lithium-induced Nephrogenic Diabetes Insipidus
نویسنده
چکیده
This study aimed to examine whether the expression of major prostaglandin E2 (PGE2) synthesis enzyme, cyclooxygenase-2 (COX-2), is changed in the kidneys of the rats with lithium-induced nephrogenic diabetes insipidus (Li-NDI). Sprague-Dawley rats treated with lithium for 4 weeks were used as the NDI model and expression of renal COX-2 was determined by immunoblotting and immunohistochemistry. In Li-NDI where urine output was markedly increased and urine osmolality was significantly decreased, COX-2 expression in the inner medulla was decreased (28% of control), while it increased 18-fold in the cortex and outer medulla. Consistent with this, labeling intensity of COX-2 in macula densa region was increased, whereas it was decreased in the interstitial cells in the inner medulla, indicating a differential regulation of COX-2 between the cortex and inner medulla in Li-NDI. Accordingly, urinary PGE2 excretion was significantly increased in Li-NDI. In conclusion, there is a differential regulation of COX-2 between cortex and inner medulla in Li-NDI and urinary PGE2 excretion is increased in Li-NDI, possibly due to an increased renal production. This may suggest that increased renal production of PGE2 could play a role in modulating water reabsorption in the renal collecting duct in Li-NDI.
منابع مشابه
CALL FOR PAPERS Nephrogenic Diabetes Insipidus Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria
Rao, Reena, Ming-Zhi Zhang, Min Zhao, Hui Cai, Raymond C. Harris, Matthew D. Breyer, and Chuan-Ming Hao. Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am J Physiol Renal Physiol 288: F642–F649, 2005. First published December 7, 2004; doi:10.1152/ajprenal.00287. 2004.—The use of LiCl in clinical psychiatry is routinely complicated by overt neph...
متن کاملTreating lithium-induced nephrogenic diabetes insipidus with a COX-2 inhibitor improves polyuria via upregulation of AQP2 and NKCC2.
Prostaglandin E(2) may antagonize vasopressin-stimulated salt absorption in the thick ascending limb and water absorption in the collecting duct. Blockade of prostaglandin E(2) synthesis by nonsteroidal anti-inflammatory drugs (NSAIDs) enhances urinary concentration, and these agents have antidiuretic effects in patients with nephrogenic diabetes insipidus (NDI) of different etiologies. Because...
متن کاملLithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase‐2
In patients, chronic treatment with lithium leads to renal microcysts and nephrogenic diabetes insipidus (NDI). It was hypothesized that renal cyclooxygenase-2 (COX-2) activity promotes microcyst formation and NDI. Kidney microcysts were induced in male adolescent rats by feeding dams with lithium (50 mmol/kg chow) from postnatal days 7-34. Lithium treatment induced somatic growth retardation, ...
متن کاملLithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria.
The use of LiCl in clinical psychiatry is routinely complicated by overt nephrogenic diabetes insipidus (NDI), the mechanism of which is incompletely understood. In vitro studies indicate that lithium can induce renal medullary interstitial cell cyclooxygenase 2 (COX2) protein expression via inhibition of glycogen synthase kinase-3beta (GSK-3beta). Both COX1 and COX2 are expressed in the kidney...
متن کاملDysregulation of renal aquaporins and epithelial sodium channel in lithium-induced nephrogenic diabetes insipidus.
Lithium is used commonly to treat bipolar mood disorders. In addition to its primary therapeutic effects in the central nervous system lithium has a number of side effects in the kidney. The side effects include nephrogenic diabetes insipidus with polyuria, mild sodium wasting, and changes in acid/base balance. These functional changes are associated with marked structural changes in collecting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2007